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ON THE BEHAVIOR OF MATERIAL DAMPING DUE
TO MULTI-FREQUENCY EXCITATION
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The paper is concerned with the dissipative behavior due to multi-frequency excitation.
It is shown both theoretically and experimentally that it is possible to treat the frequencies
separately. Practically, this leads for instance to the conclusion that the material damping
in a rotor with anisotropic bearings can be treated as a complex stiffness, which simplifies
the calculations dramatically.
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1. INTRODUCTION

Material damping gives energy dissipation due to internal damping of material. It is
assumed that the energy dissipation per cycle is independent of frequency and is
proportional to the square of the amplitude. This type of damping is normally called linear
or quadratic and leads to an elliptical s–o loop. The hysteresis loop corresponding to such
behaviour is shown in Figure 1 for three different strain amplitudes. (A list of nomenclature
is given in the Appendix.)

Most materials have non-quadratic damping with cyclic energy dissipation proportional
to the amplitude of deflection powered by a value between two and three [1]. However,
the linear damping (the deflection squared) is convenient to use since it leads to it being
possible to use an equivalent viscous damping constant,

ceq = hi /=v =, (1)

where ceq is the equivalent viscous damping constant, hi is the hysteretic material damping
constant and v is the vibrational frequency. Problems arise when the mechanical system
is excited at more than one frequency. The above substitution is then no longer valid. The
present paper deals with this problem. An assumption is made, and confirmed both
theoretically and experimentally. Finally, an application is given which shows the
advantage of the suggested assumption.

2. THEORETICAL MODEL

The most suitable way of handling rate-independent dissipation that leads to pointed
hysteretic loops is some kind of constitutive equation. One constitutive equation is the
Davidenkov expression [2]. This expression has been used by others to solve several classes
of non-linear problems. Davidenkov used the following slopes of the s–o loop,

3 ds/do=Et [1− f1 (o)], 4 ds/do=Et [1+ f2 (o)], (2, 3)
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Figure 1. Linear hysteretic material damping.

with the constraints

3so= oa = 4so= oa =−3so=−oa =−4so=−oa . (4)

Davidenkov chose some particular functions of strain and finally arrived at the following
constitutive equations

3s(o)=Et [o−(H/r){(oa + o)r −2r−1or
a}], (5)

4s(o)=Et [o+(H/r){(oa − o)r −2r−1or
a}], (6)

where H and r are material parameters which have to be determined.
The virgin function or the initial tension curve can be determined by using Masing’s rule

[3]. For the normalized curve in Figure 2, the parametric virgin function is

s(o/oa )= 1
2 63s02 o

oa
−11+ sa7. (7)

Equations (5) and (6) give the stresses when the loading behavior is periodic. If the
loading function is an arbitrary function, then it is more convenient to use a discrete
material model. A parallel-series model given by Iwan [4] (see Figure 3) has proved to give
fair accuracy and to be effective. By using the same principle as Iwan, the loading behavior
may be described as

s= s
n

i=1

Ei o+ s
N

i= n+1

sf,i , (8)

Figure 2. Stress–strain relations according to the Davidenkov equations.
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Figure 3. The parallel–series model.

where the summation from 1 to n includes all of those elements that remain elastic after
loading to a displacement oL and the summation from n+1 to N includes all those
‘‘elements’’ that have ‘‘slipped’’. The elasticity Ei and the ‘‘friction’’ stress sf,i can be
determined from the ‘‘virgin’’ force–displacement function in equation (2).

The parallel-series model accordingly consists of a number of elastic springs and slip
elements, as shown in Figure 3.

The virgin function may now, with the use of the parallel-series model, be used in
reversed order to determine the s–o loop for a material subjected to multi-frequency
excitation given by

o= o1 sin (vt)+ onsup sin (nsup vt), (9)

where nsup is a positive integer. An example of equation (9) is shown in Figure 4, where
nsup is equal to ten.

For a harmonic loop, the damping energy can be obtained by integrating equations (5)
and (6). In terms of the hysteretic loop parameters, the damping energy becomes

DU=
2r+1(r−1)HEt

r(r+1)
or+1

a . (10)

Figure 4. Stress-strain relations due to multi-frequency excitation.
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From equation (10), the loss coefficient can be expressed as

h=
2r+1(r−1)H

pr(r+1)
or−1

a . (11)

As was mentioned earlier, most materials have a non-quadratic damping proportional
to a value between two and three. This is also the case for most constitutive equations.
Equation (10) is valid only if r is larger than one. If r is equal to one the loss coefficient
in equation (11) is equal to zero! The aim of this study is to find out how to deal with
material damping in a rotor.

The material in a rotating shaft may be subjected to several frequencies at the same time.
Can these frequencies be treated separately, or in other words: is the dissipated energy for
the motion equal to the sum of the main motion and all the sub-motions? If the answer
to this question is yes, the method presented in section 4 is valid.

To simplify the writing, let sa = oa =1 and assume, for instance,

o=0·5 sin (vt)+0·1 sin (nsup vt). (12)

The energy dissipation per cycle is

DU=G s(0·5 sin (vt)+0·1 sin (nsup vt)) do. (13)

If the two frequencies are treated separately the dissipated energy for the motion, equal
to the sum of those of the main motion and all the sub-motions, becomes

DU=G s(0·5 sin vt) do+ nsup G s(0·1 sin vt) do. (14)

Let the loss coefficient in equation (11) be equal to 0·01 and let r in equation (11) be equal
to 1·01, meaning that the loss coefficient is in principle independent of the strain amplitude;
recall that sa = oa =1. Equations (13) and (14) for this case are shown in Figure 5. The
agreement is good.

The same analysis has been done for other ratios of amplitudes and the results are similar
to that in Figure 5. It seems to be a fair assumption to treat the two frequencies separately.

Figure 5. Energy dissipation for different multi-frequency excitation. ——, Equation (13); – – – –, equation
(14).
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Figure 6. The experimental set-up.

3. EXPERIMENTAL INVESTIGATION

The experimental apparatus used is shown in Figure 6. The components included are
a HP 35660A Dynamic Signal Analyzer, impact hammer, accelerometer, test specimen and
two rubber bands. The test specimen was a flat laminate that was suspended horizontally
in two weak rubber bands, simulating a free–free beam. The specimen width was nominally
55 mm. The specimen was made from carbon/epoxy unidirectional prepreg tape with a
total thickness of 3·2 mm.

Four measurements were made: the first (1) without any additional masses on the
specimen; and the second (2) and third (3) with one mass at each end and one mass in
the middle. In measurement number 2 the weight was 32 g for each mass and in number
3 it was 388 g. Finally, one measurement (4) was made with one 388 g mass at each end
and one 388 g mass 0·3 m from each end. The masses are chosen so that experiments 3
and 4 have the same first eigenfrequency, and that the first eigenfrequency of experiment
2 is in agreement with the second eigenfrequency of experiment 4; see Table 1. The weight
of the composite specimen was 284 g. The beam was excited with the impact hammer. The
eigenfrequencies and mode damping for the lowest two frequencies were measured in the
same experiment. The results are shown in Table 2.

The object of this experiment was to see if the first mode damping is the same for
experiemts 3 and 4, and that the first mode damping of experiment 2 is in agreement with
the second mode damping of experiment 4. It is specially important to notice that the first
mode damping of experiment 2 (1·76%) and the second mode damping of experiment 4
(1·50%) are almost the same, which is not obvious in advance. As the damping is the most
difficult of the modal parameters to determine, the results seem to confirm the assumption

T 1

Weights of the applied masses

Position 1 and 5 Position 2 and 4 Position 3
ZXXXXXXXXXXXXXXcXXXXXXXXXXXXXXV

Experiment weight (g)

1 — — —
2 32 — 32
3 388 — 388
4 388 388 —
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T 2

Eigenfrequencies and damping for the specimen

Eigenmode 1 Eigenmode 2
ZXXXXXCXXXXXV ZXXXXXCXXXXXV

Experiment fe1 (Hz) h (%) fe2 (Hz) h (%)

1 14·8 1·5 41·8 1·9
2 9·3 1·76 33·0 1·47
3 3·6 1·56 23·8 1·49
4 3·6 1·52 9·3 1·50

that the damping of each mode can be treated separately. In fact the damping for mode
1 in all four experiments seems to be almost the same as the damping of mode 2.

The experimental investigation seems to emphasize the conclusion from the theoretical
investigation: namely, that for a multi-frequency excited system with material damping it
seems to be a fair assumption to treat the two frequencies separately.

4. APPLICATION

In Figure 7 the disc of mass m carried by a flexible shaft with stiffness ki and damping
ci is mounted on two rigid supports. The rotor rotates with the angular velocity V. A
rotating excitation force, F, acts on the disc.

Let the x–y–z co-ordinate system be fixed in space and the j–h–z co-ordinate system
be fixed in the shaft (rotating with angular velocity V). The transformation of the
co-ordinates between these two systems is

6jh7=$ cos Vt
−sin Vt

sin Vt
cos Vt%6xy7, (15)

and the transformation of the forces is

6Fx

Fy7=$cos Vt
sin Vt

−sin Vt
cos Vt %6Fj

Fh7. (16)

If the damping is viscous, then the internal forces acting on the mass are

Fj =−ki j− ci dj� , Fh =−ki h− ci ḣ, (17)

Figure 7. A schematic figure of a rotor with internal damping.
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where ci is the viscous internal damping constant. Equation (15) gives

j� = ẋ cos Vt+ ẏ sin Vt+V(−x sin Vt+ y cos Vt),

ḣ=−ẋ sin Vt+ ẏ cos Vt+V(−x cos Vt− y sin Vt). (18)

Equation (16) with equations (17) and (18) give the forces transformed to the global system
as

Fx =−ki (x cos Vt+ y sin Vt) cos V

− ci (ẋ cos Vt+ ẏ sin Vt+V(−x sin Vt+ y cos Vt)) cos Vt

+ ki (−x sin Vt+ y cos Vt) sin Vt

+ ci (−ẋ sin Vt+ ẏ cos Vt+V(−x cos Vt− y sin Vt)) sin Vt. (19)

and in the same manner in the y-direction. Using

sin2 Vt+cos2 Vt=1 (20)

gives

Fx =−ki x− ci ẋ− ci Vy, Fy =−ki y− ci ẏ+ ci Vx. (21)

The equations of motion for the system in Figure 7 become

mẍ+ ci ẋ+ ki x+ ci Vy=F cos vt,

mÿ+ ci ẏ+ ki y− ci Vx=F sin vt, (22)

By using complex notation equations (22) can be written as

$ki −mv2 + ici v

−ci V

ci V

ki −mv2 + ici v%6xy7=6 F
−iF7 eivt, (23)

where x and y are complex displacements. If the internal damping is hysteretic it is possible
to replace ci by hi /=v−V =. The response for the rotor in Figure 7 is now obtained by
solving the system

$a11

a21

a12

a22%6xy7=6 F
−iF7 eivt, (24)

where

a11 = a22 = (ki −mv2)+ ivhi /=v−V =,

a12 =−a21 =Vhi /=v−V =. (25)

When the orbit of the motion is circular it can, for instance, be written as

x= x0 cos (vt), y= x0 cos (vt− p/2), (26)
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or, in complex notation y=−ix. Equation (22) can then be rewritten, which leads to

a11 = a22 = (ki −mv2)+ ihi sign (v−V), a12 = a21 =0. (27)

In equations (27) it can be seen that if the motion is circular the hysteretic damping can
be treated as a complex stiffness. If the motion is not circular, however, the trick of
replacing ci by hi /=v−V = will not lead to a frequency independent damping. An elliptical
motion, for instance, is obtained when bearings have different stiffnesses in different
directions.

The elliptical motion of the rotor may be described in a rotating co-ordinate system.
The elliptical motion will be divided into two parts with two different frequencies.

In the fixed co-ordinate system the motion of the rotor is an ellipse described as

x= x0 cos (vt− ax ), y= y0 sin (vt− ay ), (28)

where v is a vibration frequency, and ax and ay are the phase angles.
Elliptical motion is possible if the rotor bearings are elastically supported on springs of

different stiffness, kxx and kyy , in the x and y directions. Let the shaft deflections at the
bearings be xe and ye . If the phase angle is omitted, equation (15) gives the deflection of
the shaft in the rotating system, as

j=
(x0 − xe0)+ ( y0 − ye0)

2
cos ((v−V)t)+

(x0 − xe0)− ( y0 − ye0)
2

cos ((v+V)t),

h=
(x0 − xe0)+ ( y0 − ye0)

2
sin ((v−V)t)−

(x0 − xe0)− ( y0 − ye0)
2

sin ((v+V)t). (29)

The motion in equations (29) gives the forces from the viscous internal damping on the
shaft as

Fj =−
x0 − xe0 + y0 − ye0

2
(v−V)c(v−V) (sin ((v−V)t))

−
(x0 − xe0)− ( y0 − ye0)

2
(v+V)c(v+V) (sin ((v+V)t)). (30)

Fh =
x0 − xe0 + y0 − ye0

2
(v−V)c(v−V) (cos ((v−V)t))

−
(x0 − xe0)− ( y0 − ye0)

2
(v+V)c(v+V) (cos ((v+V)t)). (31)

where c(v−V) and c(v+V) are viscous internal damping constants. Equation (16) gives the
forces in equations (30) and (31) in the fixed co-ordinate system.

The forces in equations (30) and (31) give the response for the rotor in Figure 7. Upon
introducing the bearing stiffnesses kxx and kyy in the x- and y-directions (see Figure 8), the
new response is consequently obtained by solving the system of equations

a11 a12 a13 a14 x F cos vtK L F J F J
G G G G G Ga21 a22 a23 a24 xe 0
G G g h g h

a31 a32 a33 a34 y
=

F sin vt
, (32)

G G G G G G
a41 a42 a43 a44 ye 0k l f j f j
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Figure 8. A simple rotor with a symmetric shaft and anisotropic bearings.

where, for instance, a11 becomes

a11 = (ki −mv2) cos vt+
(c(v−V) − c(v+V))

2
V sin vt−

(c(v−V) + c(v+V))
2

V sin vt, (33)

and similarly for the rest of the terms. If the internal damping is viscous and the motion
is circular the damping coefficients are by definition given by

c(v−V) = c(v+V) = ci . (34)

In contrast to a circular motion, the same kind of equivalence as in equation (27) is not
obtained by replacing ci by hi /=v−V =. However, by using the substitutions

c(v−V) = hi /=v−V =, c(v+V) = hi /=v+V =, (35)

and rewriting in complex form then if vqV the non-zero terms in the symmetric matrix
become, after some simplifications,

a11 = a33 = (ki −mv2)+ ihi , a22 = (ki +2kxx −mv2)+ ihi

a44 = (ki +2kyy −mv2)+ ihi , a12 = a34 =−(ki +ihi ) (36)

where hi is the internal damping. In equations (36) it can be seen that the hysteretic
damping can be treated as a complex stiffness even though the motion is elliptical.
However, if Vqv, equation (32) becomes

K L F J F Jki−mv2 −ki hi −hi x0 F cos vt
G G G G G G−ki 2kxx + ki−mv2 −hi hi xe0 =

0G G g h g h
−hi hi ki−mv2 −ki y0 F sin vt

.
G G G G G G

hi −hi −ki 2kyy + ki −mv2 ye0 0k l f j f j
(37)

An explanation for the difference in these two equations can be seen in Figure 9. The
elliptical motion given by equation (28) is divided up into one forward and one backward
motion. When Vqv the direction of the damping force of the largest circular motion is
changed. The summations of the forward and backward damping forces will then be
different.

For those cases in which material damping may have to be considered, the bearings have
to be much stiffer than the shaft. The response will then be due to an applied harmonic
force, such as the unbalance load, which is often a circle. In such a case, and the excitation
frequency is not close to an eigenfrequency the vibration amplitudes of the shaft, x0 − xe0
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Figure 9. Elliptical motion divided up into forward and backward circular motions.

and y0 − ye0, will be close to each other. Equation (36) may than be used but the internal
damping, hi , has to be treated as negative when Vqv. However, in instability analyses
the circular assumption is normally not valid.

Introduce the ellipticity constant, D, defined as

D= {(x0 − xe0)− ( y0 − ye0)}/{(x0 − xe0)+ ( y0 − ye0)}, (38)

where x0, . . . is defined in equation (28). By integrating the damping forces round an
elliptical orbit it can then be shown that the ratio between the complex, DEcomplex , and exact,
DEexact , dissipated energy is

DEcomplex /DEexact =(1+D2)/(1−D2). (39)

When the eccentricity is high the vibrational motion will be an ellipse with high D.
It may be pointed out that by using the complex stiffness the damping will be treated

exactly for subcritical rotational speeds and conservatively for supercritical speeds.

5. CONCLUSIONS

The traditional equivalent damping constant ceq = hi /=v = is valid only when the motion
is circular. When the material is subjected to cyclic forces with more than one frequency
this substitution is no longer valid. It is, however, shown both theoretically and
experimentally in this paper that if the material damping is close to linear it is possible
to treat the frequencies separately. An example is given for a rotor with internal material
damping supported in anisotropic bearings. The results show that if the ellipticity is small
it is, even for a rotor with this kind of bearings, possible to treat the material damping
as a complex stiffness.
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APPENDIX: NOMENCLATURE

aij dynamic stiffness coefficients
ci internal viscous damping co-

efficient
ceq equivalent viscous damping co-

efficient
c(v−V), c(v+V) equivalent viscous damping co-

efficients
Ei elastic modulus
Et elastic modulus
F load
fe natural frequency
f1 (o), f2 (o) functions of strain
H material parameter
hi internal hysteretic damping co-

efficient
i =z−1
ki stiffness coefficient
kxx, . . . journal bearing stiffness co-

efficient
L length
m mass

n index
nsup number of cycles with super-

frequency
r material parameter
t time
x, y, z Cartesian co-ordinates
xe , ye Cartesian co-ordinates in the

bearings
x0, y0, xe0, ye0 amplitudes
a phase angle
DU dissipation energy
o strain
oa strain amplitude
j–h–z rotating co-ordinate system
h loss coefficient
s normal stress
sf,i normal stress
sa normal stress amplitude
V angular rotational frequency of

the shaft
v angular frequency


